Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal


MCP1 - Sensorics, development of sensors and methods

MCP1 leader: Frédéric Baret (EMMAH, INRA)

We develop measurement systems and workflows that transform sensor outputs into accurate, precise and heritable variables used for genetic analyses. Recent technological advances offer a wide range of sensors and systems to characterize soil, crop and environmental conditions. The resulting data are integrated into the PHIS information system (MCP2).

Environmental characterisation

  • Light in controlled conditions: The incident light in a greenhouse is heterogeneous (up to two-fold variation over 1m). Measurements and simulated sun beam trajectories through greenhouse structures allows estimation of the light received by each plant every day of the year.
MCP1 light greenhouse

Spatial variability of light transmission in a greenhouse cumulated over one month, due to greenhouse structures, and time course of light transmission in six places over one day. Note that light can vary by 100% over short distances

  • Sensor network: A common set of sensors is used in the infrastructure; outputs are handled by the Phenome-Emphasis information system. Wireless sensors of temperature and light were developed for monitoring organ micro-climate via tens of sensors installed in controlled conditions and field.

Functional traits in controlled and field conditions

  • Estimation of whole-plant photosynthesis and stomatal conductance. The use of gas exchange, i.e the refrence technique for photosynthesis and stomatal conductance, is impossible at high throughput. We evaluate the amount of light intercepted by 1000s of plants in controlled or field conditions, using 3D reconstructions of plants placed in virtual canopies17. Inversion of physical equations allows estimation of the of canopy photosynthesis and stomatal conductance8. The figure shows that whole-plant stomatal conductance measured at high throughput is a good proxi of that measured with gas exchanges, for evaluating its genetic variability.
MCP1 conductance
  • Development of an original Phenomobile.  It was developed for accurate estimation of, e.g. vertical distribution of leaf area or spike number, together with multispectral measurements for functional imaging. It sample all the microplots in a completely automatic way and carrying high-resolution cameras, multispectral cameras and LiDAR, the whole of these instruments working in an active way with flashes, making the measurement independent from the illumination conditions. An automatic data processing platform is developed.
MCP1 lidar

Left, a field phenotyping platform with microplots. Middle, the phenomobile. Right, an example of 3D images of a wheat microplot obtained from the LiDAR carried by the phenomobile.

  • Drone Imaging. This technology equips all field platforms, with a RGB, multispectral and thermal infrared cameras. A pipeline was developed for extraction of canopy height, plant/organ number per m2, intercepted light, chlorophyll content and canopy temperature.
MCP1 drone fr

Drone imaging, stem number identified by machine learning and comparison of estimated values with manual measurements

  • Automatic organ detection. Pipelines allow organ recognition based on deep learning6. In controlled conditions, they drive a camera that takes detailed images at short distance (2). A similar pipeline is installed on the field Phenomobile for recognizing and counting organs or plants.
  • Structuration and integration of imaging workflows in a modelling platform(OpenAlea). This includes wrapping image processing libraries (imageJ macro call, OpenCV) and formalization of workflows.

In the next years, a priority will be given to the assessment of biotic interactions

  • Quantification of biotic stress under field and controlled conditions. Deep learning will be used for for recognition of symptoms such as spots or necrosis in the field. In controlled conditions, 3D plant reconstruction will be used for tracking the time course of symptoms, together with their impact on photosynthesis via imaging.
  • Developing methods to assess and mitigate the impact of biotic and abiotic stresses. Integration of phenotyping observations within process models will be explored to assess the impact of stresses and methods to mitigate it via canopy structure (mix of varieties or species). This involves (i) in controlled conditions, 3D characterization and reconstruction of individual plants/genotypes (ii) The generation by users of thousands of virtual canopies associating genotypes, and then the calculation of canopy photosynthesis and diffusion of pathogens. (iii) The test in the field of a limited number of.
  • Deployment of the processing pipeline and integration with PHIS. A comprehensive pipeline for processing data acquired with phenomobiles and drones is designed to interact intimately with PHIS to get the ontology basis and the set of metadata required for the processing.